

Who is doing what to who?

So what - protein interactions?

- Knowing where proteins interact is important
- What drives these interactions? Non-covalent bonds!!! Intermolecular forces!!!

Malate Dehydrogenase

- MDH is a homodimer two identical protein chains that come together to form the actual protein
- Two binding/active sites
- Human Cytosolic MDH structure is based on pig cyto MDH >90% homology

Malate Dehydrogenase: Regulation, Metabolism and Disease - Why do we care?

- Cancer tissues use MDH and GOT to support additional metabolic burden via glutamine or lactate
- MDH expression and activity increases in cancer cells
- Some cancer tissues have mutations in the MDH gene
 Protein interactions seem to change in larger hypoxic
- tumors
- Neuro disorders: Both Alzheimer's and ALS have changed MDH function
- Many MDH1 residues are phosphorylated without known function

- mMDH and CS active sites are denoted by black arrows. (D) *In vitro* complex formed by commercial enzymes. Surface regions of positive potential and negative potential are colored in blue and red, respectively.
- The electrostatic channeling path for OAA is highlighted by the yellow edge.
- Orange arrows indicate the active sites.

So now what?

- Species/organism uniqueness does this happen everywhere? Is there an evolutionary split in MDH-CS.
- Where are the actual points of contact show this to be the case
- How do cyto/mito MDH interact differently
- Regulation by PTM (phosphorylation and other)
- Redox/metabolomic intermediate regulation of interaction

SP P40926 MDHM_HUMAN SP P40925-3 MDHC_HUMAN	MLSALARPASAALRRSFST-SAQNNAKVAVLGASGGIGQPLSLLLKNSPLVSRLT MRRCSYFPKDVTVFDKDDKSEPIRVLVTGAAGQIAYSLL <mark>YS</mark> IGNGSVFGKDQPIILV * * * * : * * **:* * . *	54/30 57
SP P40926 MDHM_HUMAN SP P40925-3 MDHC_HUMAN	LYD <mark>IAHTP:VAADISH</mark> IETKAA <mark>VKGYLGPE</mark> QLPDCLKGCDVVVIPA <mark>GVPRKPGMTR</mark> LLDIT <u>PMMGVLGVUMELQD</u> -ALPLLKDVIATDKEDVAFKDLDVAILVG S MPRREGMER * **: ** ** ** :: :: :* :* ** **	110/86 116
SP P40926 MDHM_HUMAN SP P40925-3 MDHC_HUMAN	DDLFNTNATIVATLTAACAQHCPEAM-ICVIANPVNSTIPITAEVFKKHGVYNPNKIF-G KDLLKANVKIFKSQGAALDKYAKKSVKVIVVGNPANTNCLTASKBAPSIPKENFSC .**:::**. : ** ::. ::: : *:.**.	168/144 172
SP P40926 MDHM_HUMAN SP P40925-3 MDHC_HUMAN	VTTLDIVRANTFVAELKGLDPARVNVPVIGGHAGKTIIPLISQCTPKVDFPQDQL LTRLDHNRAKAQIALKLGVTANDVKNVIIWGNHSSTQYPDVNHAKVKLQGKEVGVYEA :* ** **:::* *: :* *: :* *:* *:*:	223/199 230
SP P40926 MDHM_HUMAN SP P40925-3 MDHC_HUMAN	T ALTGRIQEAGTE <mark>VVKAKAGAGSAFI</mark> SMA¥AGARFVFSLV-DAMNGKEGVVE LKDD S WLKGEFVTTVQQRGAAVIKARKI <mark>SSAMS</mark> AAKAICDHVRDIWFGTPE :. :*: *: *: *: *: *: *: *: *: *: * *: *	274/250 281
SP P40926 MDHM_HUMAN SP P40925-3 MDHC_HUMAN	CSFVKSQETECTYFSTPLLLG <mark>KKGIEKNLGIGKVSSFEEKMISDAIPELKA</mark> GEFVSMGVISDGNSYGVPDDLLYSFPVVIKNKTWKFVEGLP-INDFSREKMDLTAKELTE .**. : :* *::::* : *:*.: .* : **.	325/301 340
SP P40926 MDHM_HUMAN SP P40925-3 MDHC_HUMAN	SIKKGEDFVKTIK 338/314 EKESAFEFLSSA- 352 . : :*:.:	

MDH-CS interactions

- Create a solid interaction detection method
 - Pull down
 - Spin format vs magnetic bead format vs traditional microfuge tube approach
 - Requirement for molecular crowding with wild-type enzyme
 - Determine the best/sensitive /quantitative detection method (gel, enzyme assay, protein assay)
 - Measure impact of mito -> to -> cyto swap (kinetic and interaction)
 Measure impact of phosphorylation mutants (kinetic and interaction)
- Finish docking to identify current and new potential regulation sites
- Measure kinetic characteristics of mito-cyto MDH swaps and phosphomimics.
- Determine potential kinase(s) responsible for phosphorylation
- Pull down assays, Thermal Melt assays, Fluorescence Anisotropy, SPR, competition assay
 - ✓ Look at competition binding
 - ✓ Impact of metabolites
 - ✓ Impact of phosphorylation